

Sustainable Data Evolution Technology (SDET) for Power Grid Optimization

presented by

Ruisheng Diao, Ph.D., P.E. Team Lead/Staff Research Engineer Pacific Northwest National Laboratory July 20th, 2017

Project Summary

- Objective: to deliver large-scale, realistic, evolvable datasets and data creation tools for optimization problems such as AC OPF and VVO
 - Derive data features/metrics for real T+D systems
 - Develop tools to generate large-scale, open-access, realistic synthetic datasets
 - Validate the created datasets using industry tools
 - Integrate with GRID DATA repositories
- A novel concept "data evolution", with long-lasting impact
 - Enable the datasets to evolve with the increasing grid complexity.
 - Accelerate development and adoption of grid optimization methods.
 - Improve the reliability, resiliency and efficiency of the power grid.
- ▶ Timeline: October 2016 September 2018

Evolvable open-access large-scale datasets to accelerate the development of next-generation power grid optimization.

Tasks and Dependency

Datasets Requirements

- Large-scale
- Realistic
- Open-access
- Sustainable (ARPA-E independent)
- Evolvable (datasets are not static)

Deliverables

- Datasets
- Dataset creation tools

A Fragmentation Approach

- "Deterministic" approach on the system fragment level for the most of system parameters
 - Real-world systems will be used
 - Each system model will be fragmented into zones, preserving:
 - Generation, load level
 - Lines, transformers, controllers
 - Data anonymization approach will be used
 - The zones will be recombined to form the desired system model
 - Creating tie-lines between zones through a graph theory algorithms

Prepare fragments from real-world models

An iterative process to build the "kernel"

Inputs

- Desired size of the model
- A number of fragments with connectors

Outputs:

- Synthetic skeleton/ topology (picture in the middle)
- Minimizing voltage difference between zones
- · Minimizing line crossings
- Satisfying graph metrics
- Paths are ordered such that smallest zones are connected first.

Creating Key Grid Information

- A "probabilistic" approach for
 - Production cost/market bid data
 - Variable resources
 - Random factors added to the system load
- Distribution System Model Creation for VVO
 - Real-world feeder models and data will be collected
 - Applying a data anonymization approach

Metrics for measuring realism

Graph-theoretic metrics

- Degree distribution
 - The degree of a node is the number of connections it has to other nodes
 - Degree distribution is the probability distribution of these degrees over the whole network
- Average shortest path length
 - A path between two vertices (or nodes) such that the sum of the weights (number of edges in a path) of its constituent edges is minimized
 - Average number of branches between 2 buses
- Diameter
 - The longest shortest path between any pair of vertices
 - The max number of branches between 2 buses (is a function of system size)
- Average clustering coefficient
 - Ratio of actual edges between its neighbors to all possible edges
 - Clustering coefficient tells how well the graph nodes are connected with each other

Power grid parameter metrics

 Based on real-world characteristics, we will use the following typical statistical measures: 1) Mean value; 2) Standard deviation (STD); 3) Min value, and 4) Max value

SDET Tool Architecture

Key Steps

Curation Process

Achievements So Far

- Key modules ready
 - SDET framework in C++
 - PTI file parser, v33
 - Fragment creation code in python
 - Topology creation code
 - Fragment reconnection
 - Validation module through PSSE
 - Creation of the generator cost curves
- ▶ A few power system models with ~500 buses
 - Good convergence
 - Meeting metrics requirements
- ▶ A few power system models with ~3000 buses
 - Good convergence
 - Meeting metrics requirements

500 bus model generated

- 10 real-world fragments
- 45 tie lines created
- 528 buses
- 66 generators
- 6.3 GW of load

3000 bus model generated

- 21 real-world fragments
- 116 tie lines created
- ~3000 buses
- ~500 generators
- 36.5 GW of load

Conclusions

- Making datasets evolving is important to keep up with grid development and enable technology advancement
- Delivering datasets is important, but delivering data creation tools can enable data evolution
 - Topology generation tool
 - Parameter population tool
 - Data anonymization tool
- Datasets and data creation tools are to be shared through GRID DATA repositories and professional communities

Questions?

